
Building a state tracing kernel

Dr.Vinay G. Vaidya
Ananth Chakravarthy

Symbiosis Deemed University, Pune,
India

Agenda

The trigger
The architecture
Description of the tools
Description of the interpreter
Description of the new Kernel
Conclusion

The trigger

Anti-virus
Based on signatures
What if the signature is yet to be
generated

Buffer-overflow attacks
Generally exposed by an internet posting
Fix procedure involves updating the
software

The trigger - Continued

Some flaws in current security solutions
Not reactive

Wait for the attack to happen (anti-virus)
Wait for the vulnerability to be exposed
(internet posting)
IDS – what if the signature is yet to be
generated?
How safe are we in believing the ‘complacency’
of the end users?

The trigger

Hence a need for a system that
Attempts to protect before an attack
actually happens.
The entire context of execution happens to
be with the operating system rather than
individual tools
Based on the semantics of execution of the
binary

Current flow of execution

No

Start

Fetch next
instruction

perform system
call

Is Interrupt
Instruction

Yes

perform
instruction

Yes
Is next
Instruction
present?

Stop
No

Architecture of the new
system

User
Space

t1
t2

t3

t5
t4

Kernel Space

Interpreter
space

User space

t3

t1

t2

t8

t6

t7

t4

t5

Kernel space

Overall approach
Tool to reverse engineer a binary to identify the
complete set of states
Tool to identify what are the characteristics for each
of the states identified in the above step.
An interpreter which keeps triggering the kernel
verification code whenever there is a state transition.
A modified kernel that accepts calls from the
interpreter and verify the state transitions
A mechanism inside the kernel to verify various
aspects of the running process

Sequence as per new flow

Fetch next block of
instructions for a state
called cache

Fetch code to be
injected into the
cache

Execute the modified
code cache

Transfer control to
the kernel by issuing
new system calls
developed for state
verification

Start

Repeat all of above
steps until no more
blocks

Stop

Deductions from the new
architecure

The amount of total time taken to execute
the binary is definitely going to increase.
The Interpreter acts as a sandbox under
which the binary to be executed is to be run.
There is some code as part of the interpreter
which is executed intermixed with the code of
the binary
The number of system calls may increase
proportionally to the number of states.

State defined

A state may be defined as the collection
of sequential instructions that do not
branch off due to a jump
(conditional/non-conditional), int or call
instructions

Elf format defined

Elf Header

Program Header Table

Segment 1

Segment 2

Optional Section
Header Table

Sample disassembled code
<FunctionCodeChunk funcName=_ZN11PLTModifier12copy_partialEiij
> <InstructionList>

08056DEE 55 push ebp
08056DEF 89 E5 mov ebp esp
08056DF1 81 EC 18 10 00 00 sub esp
0x00001018
08056DF7 C7 85 F4 EF FF FF 00 00 00 00 mov
[ebp-4108] 0x00000000
08056E01 8B 85 F4 EF FF FF mov eax
[ebp-4108]
08056E07 05 00 10 00 00 add eax
0x00001000
08056E0C 3B 45 14 cmp eax [ebp+20]
08056E0F 0F 83 8E 00 00 00 jnc
0x08056EA3

Identifying state
characteristics

Memory state of the registers
Memory state of some of the global
variables
Memory state of the function variables.
Allowed state transitions
Allowed set of system calls also termed
as Actions
Sequence of system calls

Additional requirements

Commands
Used to capture state info at the kernel
level

Use cases
Capture a semantic set of actions

Global Declarations
Common files to be loaded (libs)

Memory state of registers

Not ‘collectible’ for all states
Some of the mechanisms that can be
used to capture are

Absolute value of registers
Relative value of registers

Value increases/decreases from a given state
by a definite value

Stack based register signature

Memory state of registers

Ideally should be verified in the
interpreter space
Cant be applied to the library dis-
assembled code as lib code is generally
position independent.

Since pos independent, verification will be
difficult

Memory state of global
variables

Signature extracted by looking at
portions of code that tend to

Read/write to “.bss” section
Read access from “.rodata” section

Memory state of function
variables

Function stack will
be used to generate
the stack frame
The state is
calculated using the
references by using
the pattern [ebp +
xxx]

Allowed set of transitions

Used to track the jmps/calls in the
binary address range.
Cant effectively mark the valid
transitions for library code.
Can be verified by the interpreter when
the control reaches the interpreter
space

Allowed set of system calls
System calls are generally implemented by
libraries.
They can be analyzed by the presence of
“int” instruction
Static analysis of the system calls is very
difficult because the system call is acted by
the values present in various registers
Extracting the values of registers before the
int instruction requires the processing a lot
more up the stack

Allowed sequence of system
calls

The most complex form of signature
generation
There are loops and conditionals before
the actual system call point or state is
reached.
It becomes difficult because of “call”
instructions

Commands

Sometimes it becomes difficult to verify a
state until some information is given to
kernel.
A command gives a directive to the kernel to
collect state information so that it can be
verified at a later point in time.
Ex: A file write operation might verify based
on file open operation.

UseCases

Each usecase is triggered by the calling of a
function
The tool asks the high-level function that
triggers the functioning of the usecase
The tool then builds the tree of code that can
be called from this point including the library
code chunks.
It builds the various signatures as mentioned
previously for each usecase.

The interpreter

Based on the dynamorio framework
A code caching framework
Effort involved in building the library
that implements the hooks
The interpreter is used to primarily
check

Register signatures
Permissible transitions

Modified kernel

Additions to task_struct
History_node
Static description (as generated by the tool)
Runtime description (commands collected)

A new set of system calls for
Interpreter to call for

Storing information
Triggering verification when the use case has been
completed (as per address transition)

The model loader at boot time

Modified Kernel

The verification runs as a parallel
thread.
The interpreter triggers the verification
The verification can also be done for
priority states

For example, opening a socket, opening a
file

Some observations

Performance

System yet to be completed hence
complete statistics not yet available.
Performance hit observed. (around 100
% decrease in performance for some
binaries)
Need to optimize on

Number of verifications
Deductible verification

Thank you

Q & A

